## edexcel

# Mark Scheme (Results) 

## Summer 2013

GCSE Physics (5PH3F)<br>Paper 01

## Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk for our BTEC qualifications.
Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson.
Their contact details can be found on this link: www.edexcel.com/teachingservices.

You can also use our online Ask the Expert service at www.edexcel.com/ask. You will need an Edexcel username and password to access this service.

## Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www. pearson.com/uk

Summer 2013
Publications Code UG036897
All the material in this publication is copyright
© Pearson Education Ltd 2013

## General Marking Guidance

- $\quad$ All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- $\quad$ All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- For questions worth more than one mark, the answer column shows how partial credit can be allocated. This has been done by the inclusion of part marks eg (1).
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.


## Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- Write legibly, with accurate spelling, grammar and punctuation in order to make the meaning clear
- Select and use a form and style of writing appropriate to purpose and to complex subject matter
- Organise information clearly and coherently, using specialist vocabulary when appropriate.

| Question <br> Number | Answer | Acceptable answers | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{1 ( a ) ( i )}$ | $区$ C the same as the charge <br> on the proton |  | (1) |


| Question <br> Number | Answer | Acceptable answers | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{1 ( a ) ( i i )}$ | $\boxtimes$ A electrons |  | (1) |


| Question <br> Number | Answer | Acceptable answers | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{1 ( b ) ( i )}$ | 222 | 4 less/4fewer | (1) |


| Question <br> Number | Answer | Acceptable answers | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{1 ( b ) ( i i ) ~}$ | 86 | 2 less/2fewer | (1) |


| Question Number | Answer | Acceptable answers | Mark |
| :---: | :---: | :---: | :---: |
| 1(c) | A description including two of: <br> - Kill/damage cells(1) <br> - affecting DNA (1) <br> - (causing) mutation (1) <br> - by ionisation (1) <br> - make cell reproduce rapidly (1) <br> - cause cancer (1) <br> - (radiation) burns (1) <br> - (radiation) sickness (1) |  | (2) |


| Question <br> Number | Answer | Acceptable answers | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{1 ( d )}$ | An explanation linking any <br> suitable precaution to a sensible <br> reason: <br> Eg lead/shielding (1) <br> (because it) <br> stops/absorbs radiation (1) <br> Use of radiation meters (1) <br> \{measure/warn of\} radiation <br> received (1) <br> put up signs (1) <br> (to )keep people away from <br> radiation (1) <br> increasing distance (1) <br> (to)reduce intensity (1) <br> to reduce dose(1) <br> by limiting the number of X-rays <br> taken (1) | source locked away for shielding | (worker) leaves room |
| inverse square law |  |  |  |$\quad$ (2) $\quad$ (

Total mark question $1=8$

| Question <br> Number | Answer | Acceptable answers | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{2 ( a ) ( i )}$ | 区 D refraction |  | (1) |


| Question <br> Number | Answer | Acceptable answers | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{2 ( a ) ( i i )}$ | substitution: (1) |  |  |
| power = 1/ 2 |  |  |  |
| evaluation: (1) |  |  |  |
| 0.5 (D) | Award 2 marks for correct <br> answer no working | (2) |  |


| Question <br> Number | Answer | Acceptable answers | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{2 ( b ) ( i )}$ | $\boxed{B}$ |  | (1) |


| Question <br> Number | Answer | Acceptable answers | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{2 ( b ) ( \text { ii) }}$ | $\square \quad$any other diverging lens <br> (lens which is narrower at the <br> centre than at the ends) | (1) |  |


| Question <br> Number | Answer | Acceptable answers | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{2 ( b ) ( i i i )}$ | a description including any two <br> from: <br> - to spread out the light/ <br> rays (1) <br> to produce focused image <br> (1) <br> (focused image) on the <br> retina (1) | make image distance longer <br> sharp/clear image | (2) eye |


| Question <br> Number | Answer | Acceptable answers | Mark |
| :--- | :--- | :--- | :--- |
| 2(b)(iv) | contact lenses (1) | laser surgery/ eye lens <br> replacement | (1) |


| Question <br> Number | Answer | Acceptable answers | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{3 ( a ) ( i )}$ | An explanation linking: <br> Angle (of incidence) in glass (1) <br> greater than critical angle /42 <br> (1) | Angle in air cannot be greater <br> than $90^{\circ}$ for 1 mark <br> Glass has a higher refractive <br> index than air for 1 mark | (2) |


| Question <br> Number | Answer | Acceptable answers | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{3}$ (a)(ii) |  | accept for 1 mark |  |


| Question <br> Number | Answer | Acceptable answers | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{3}$ (a)(iii) | $\boxtimes \quad$ C speed decreases |  | (1) |


| Question <br> Number | Answer | Acceptable answers | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{3 ( b ) ( i )}$ | An explanation linking any three <br> of the following: <br> (Optical fibres) bend (1) <br> Some fibres carry light to the <br> inside of the patient (1) <br> Some fibres transmit the <br> reflected light <br> (1) <br> light passes up/down fibres by (1) <br> TIR <br> light is reflected inside the (1) <br> patient (1) <br> image is analysed by computer <br> (1) | Image projected on a screen | (3) |


| Question <br> Number | Answer | Acceptable answers | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{3 ( b ) ( i i )}$ | Either  <br> Breaks/blasts/smashes  <br> (1)  <br> Kidney stones  <br> or  <br> Energy absorbed  <br> to help repair muscle tissue (1) (1)  <br> or  <br> Use of gel (1)  <br> to prevent loss of intensity (1)  <br> or  | bruising/clots <br> increases blood flow |  |


| Question <br> Number | Answer | Acceptable answers | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{4 ( a ) ( i )}$ | $2.5(\mathrm{~m})$ | Allow answers between (and <br> including) $2.45 \& 2.55$ | (1) |


| Question <br> Number | Answer | Acceptable answers | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{4}(\mathbf{a ) ( i i )}$ | $0.7(\mathrm{~s})$ | Allow answers between (and <br> including) $0.68 \& 0.72$ | (1) |


| Question Number | Answer | Acceptable answers | Mark |
| :---: | :---: | :---: | :---: |
| 4 (a)(iii) | height/m <br> line: <br> same shape as original (1) <br> peak at 1.9 m (1) <br> time taken $<0.7$ s | I gnore any part of the graph after the peak | (3) |


| Question <br> Number | Answer | Acceptable answers | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{4 ( a ) ( i v )}$ | An explanation linking: | Inelastic collision worth (2) |  |
| energy lost (1) |  |  |  |
| in collision with ground / air <br> resistance (1) | as sound or heat |  |  |


| Question <br> Number | Answer | Acceptable answers | Mark |
| :--- | :--- | :--- | :--- |
| 4 (b)(i) | shown using data <br> Any two from <br> kinetic energy before $=12.5+0$ <br> $(=12.5)(1)$ <br> kinetic energy after $=4.5+8$ <br> $(=12.5)$ <br> $(1)$ | Kinetic energy is the same before <br> and after the collision (1) | Kinetic energy is conserved/no <br> energy lost |


| Question <br> Number | Answer | Acceptable answers | Mark |
| :--- | :--- | :--- | :--- |
| 4 (b)(ii) | cyclotron (1) | named particle accelerator <br> accept CERN | (1) |

Total mark for question $4=10$

| Question <br> Number | Answer | Acceptable answers | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{5 ( a ) ( i )}$ | $\boxtimes \quad$ A on the finger |  | (1) |


| Question <br> Number | Answer | Acceptable answers | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{5}$ (a)(ii) | infrared (1) | red light | (1) |


| Question <br> Number | Answer | Acceptable answers | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{5 ( a ) ( \text { iii) }}$ | $89 / 60$ (1) |  |  |
|  | 1.5 (beats/second) (1) | 1.48 (beats/ second) <br> Allow 1.49 <br> 1.483333 etc <br> Accept correct answer no <br> working for 2 marks | (2) |


| Question <br> Number | Answer | Acceptable answers | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{5 ( a ) ( i v )}$ | $1 / 1.5$ (1) | ecf |  |
|  | $0.67(\mathrm{~s})(1)$ | $1 / 89$ one mark only <br> Accept correct answer no <br> working for 2 marks | (2) |



| Question <br> Number | Answer | Acceptable answers | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{6 ( a ) ( i )}$ | volume in range $9.0-10.5 \quad\left(\mathrm{~cm}^{3}\right)$ <br> $(1)$ <br> pressure in range $1.5-1.7 \quad(\mathrm{kPa})$ <br> $(1)$ |  |  |


| Question <br> Number | Answer | Acceptable answers | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{6}(\mathbf{a ) ( i i )}$ | $\boxtimes \quad$ D 296 K |  | (1) |


| Question <br> Number | Answer | Acceptable answers | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{6 ( a ) ( i i i )}$ | Volume in range 4-8(cm $)$ | Any value between 4 $\left(\mathrm{cm}^{3}\right)$ and <br> $8\left(\mathrm{~cm}^{3}\right)$ |  |
|  |  |  | (1) |


| Question <br> Number | Answer | Acceptable answers | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{6 ( a ) ( \text { iv } )}$ | Substitution (1) <br> $2.2 \times 10.8 \div 0.2$ <br> Evaluation (1) <br> $119\left(\mathrm{~cm}^{3}\right)$ | $118.8\left(\mathrm{~cm}^{3}\right)$ <br> give full marks for the correct <br> answer, no working | (2) |


| Question Number |  | Indicative Content Mark |
| :---: | :---: | :---: |
| QWC | *6(b) | An explanation including some of the following points: <br> particles in gas <br> - move rapidly <br> - throughout container <br> - collide with each other <br> - collide with walls/lid of container <br> - exerting a force <br> particles in solid <br> - in fixed positions <br> - vibrate <br> - do not reach lid |
| Leve I | 0 | No rewardable content |
| 1 | 1-2 | - a limited explanation e.g. particles in the copper do not touch the lid / particles in the oxygen do touch the lid <br> - the answer communicates ideas using simple language and uses limited scientific terminology <br> - spelling, punctuation and grammar are used with limited accuracy |
| 2 | 3-4 | - a simple explanation e.g. particles in a gas can move freely and collide with the lid <br> - the answer communicates ideas showing some evidence of clarity and organisation and uses scientific terminology appropriately <br> - spelling, punctuation and grammar are used with some accuracy |
| 3 | 5-6 | - a detailed explanation e.g. particles in a gas can move freely and collide with the lid but particles in a solid vibrate about fixed positions so cannot reach the lid <br> - the answer communicates ideas clearly and coherently uses a range of scientific terminology accurately <br> - spelling, punctuation and grammar are used with few errors |

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UG036897 Summer 2013

For more information on Edexcel qualifications, please visit our website
 www.edexcel.com

